Minimum Description Length Model Selection Problems and Extensions

نویسندگان

  • Steven de Rooij
  • Peter Grünwald
چکیده

203

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model selection using wavelet decomposition and applications

In this paper we discuss how to use wavelet decomposition to select a regression model. The methodology relies on a minimum description length criterion which is used to determine the number of non-zero coefficients in the vector of wavelet coefficients. Consistency properties of the selection rule are established and simulation studies reveal information on the distribution of the minimum desc...

متن کامل

Computing Minimum Description Length for Robust Linear Regression Model Selection

A minimum description length (MDL) and stochastic complexity approach for model selection in robust linear regression is studied in this paper. Computational aspects and implementation of this approach to practical problems are the focuses of the study. Particularly, we provide both algorithms and a package of S language programs for computing the stochastic complexity and proceeding with the a...

متن کامل

The Minimum Description Length Principle in Coding and Modeling

We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to ...

متن کامل

Model Selection and the Principle of Minimum Description Length

This paper reviews the principle of Minimum Description Length (MDL) for problems of model selection. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the complexity of each description. This approach began with Kolmogorov’s theory of algorithmic complexity, matured in the literature on info...

متن کامل

Model selection for the rate problem: A comparison of significance testing, Bayesian, and minimum description length statistical inference

One particularly useful but under-explored area for applying model selection in psychology is in basic data analysis. Many problems of deciding whether data have ‘‘significant differences’’ can profitably be viewed as model selection problems. We consider significance testing, Bayesian and minimum description length (MDL) model selection on a common data analysis problem known as the rate probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008